0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 300 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 1387 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 RewriteLemmaProof (LOWER BOUND(ID), 2827 ms)
↳14 BEST
↳15 typed CpxTrs
↳16 RewriteLemmaProof (LOWER BOUND(ID), 1415 ms)
↳17 BEST
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^1, INF)
↳21 typed CpxTrs
↳22 LowerBoundsProof (⇔, 0 ms)
↳23 BOUNDS(n^1, INF)
↳24 typed CpxTrs
↳25 LowerBoundsProof (⇔, 0 ms)
↳26 BOUNDS(n^1, INF)
↳27 typed CpxTrs
↳28 LowerBoundsProof (⇔, 0 ms)
↳29 BOUNDS(n^1, INF)
↳30 typed CpxTrs
↳31 LowerBoundsProof (⇔, 0 ms)
↳32 BOUNDS(n^1, INF)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
f(0) → s(0)
f(s(x)) → minus(s(x), g(f(x)))
g(0) → 0
g(s(x)) → minus(s(x), f(g(x)))
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
f(0') → s(0')
f(s(x)) → minus(s(x), g(f(x)))
g(0') → 0'
g(s(x)) → minus(s(x), f(g(x)))
They will be analysed ascendingly in the following order:
minus < f
minus < g
f = g
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
minus, f, g
They will be analysed ascendingly in the following order:
minus < f
minus < g
f = g
Induction Base:
minus(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)
Induction Step:
minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_0':s2_0(+(1, 0)))
Induction Step:
g(gen_0':s2_0(+(1, +(n228_0, 1)))) →RΩ(1)
minus(s(gen_0':s2_0(+(1, n228_0))), f(g(gen_0':s2_0(+(1, n228_0))))) →IH
minus(s(gen_0':s2_0(+(1, n228_0))), f(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n228_0))) → *3_0, rt ∈ Ω(n2280)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
f(gen_0':s2_0(+(1, 0)))
Induction Step:
f(gen_0':s2_0(+(1, +(n4065_0, 1)))) →RΩ(1)
minus(s(gen_0':s2_0(+(1, n4065_0))), g(f(gen_0':s2_0(+(1, n4065_0))))) →IH
minus(s(gen_0':s2_0(+(1, n4065_0))), g(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n228_0))) → *3_0, rt ∈ Ω(n2280)
f(gen_0':s2_0(+(1, n4065_0))) → *3_0, rt ∈ Ω(n40650)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_0':s2_0(+(1, 0)))
Induction Step:
g(gen_0':s2_0(+(1, +(n64234_0, 1)))) →RΩ(1)
minus(s(gen_0':s2_0(+(1, n64234_0))), f(g(gen_0':s2_0(+(1, n64234_0))))) →IH
minus(s(gen_0':s2_0(+(1, n64234_0))), f(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n64234_0))) → *3_0, rt ∈ Ω(n642340)
f(gen_0':s2_0(+(1, n4065_0))) → *3_0, rt ∈ Ω(n40650)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n64234_0))) → *3_0, rt ∈ Ω(n642340)
f(gen_0':s2_0(+(1, n4065_0))) → *3_0, rt ∈ Ω(n40650)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n228_0))) → *3_0, rt ∈ Ω(n2280)
f(gen_0':s2_0(+(1, n4065_0))) → *3_0, rt ∈ Ω(n40650)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n228_0))) → *3_0, rt ∈ Ω(n2280)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.